If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2g^2+3g-5=0
a = 2; b = 3; c = -5;
Δ = b2-4ac
Δ = 32-4·2·(-5)
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-7}{2*2}=\frac{-10}{4} =-2+1/2 $$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+7}{2*2}=\frac{4}{4} =1 $
| (x-3/2x+1)=4 | | 0.4x+1.5=0.7x-1.2 | | (4x+3)(2x+3)=0 | | -3(4t-4)+7t=8t-3 | | 2.4+x=2.2x | | 1x+0.7=1-0.2 | | 2+n+2+4=n+8-4n | | -8.75t^2+35t=0 | | 112(12+10x)=180 | | 2+n+2+4=n+8-4 | | 7x-4=93 | | 1/5c+4=9 | | -4(3t-4)+5t=6t-3 | | 2(5)y+5y^2=315 | | 5k-8=77 | | -n-16=n-2 | | 9a-5a+4=20 | | (9x-3)(x+7)=0 | | 6b+4b-7b-3=15 | | 3x+5=-7x+84 | | (-5x-9)+74=180 | | 8h-7h=19 | | 3x+11=9-1/3x | | 10(1+3v)=-8(6v+1) | | 3x+11=9-1/3 | | 8-2x-2+4x=20 | | 8(a-6)=-(a+3) | | 6-3m=-14+2m | | M-m+2m-2=4 | | 8(5-6b)=-7-b | | 11q+3q-4q=20 | | x-(-x+39)=17 |